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Abstract 

Changes in the Earth's climate are likely to increase natural hazards like landslides in the hilly 

regions of north India. Thus, forecasting of these events at local-scale will help improve the 

preparedness of society in facing landslide disasters. There has been prior machine-learning 

research to predict landslide occurrence based on the statistical analysis of historical data and 

different triggering factors. While these attempts have shown promising results, these approaches 

have been limited to predicting landslides at a daily-scale. In this paper, we overcome the daily-

scale limitation and focus on a minute-scale prediction of landslides by monitoring several soil and 

weather properties from a landslide site at Kamand, Himachal Pradesh. Data about temperature, 

humidity, rain, atmospheric pressure, light intensity, soil moisture, soil pressure, and soil movement 

were collected every 11-minutes from a landslide location on the Indian Institute of Technology 

Mandi campus at Kamand, Himachal Pradesh over a 10-day period in August 2017. The data 

contained a total of 842 instances to train several supervised machine-learning (ML) techniques. 

These included logistic regression, C4.5 decision tree, Naive Bayes, random forest and support 

vector machine with a non-linear polynomial kernel function. These models predicted soil 

movements as a binary class-problem, where the positive-class corresponded to soil movement, and 

the negative-class referred to no-movement. As the movement data had several instances of no-

movement (732 instances) and a few cases of movement (110 instances; i.e., class-imbalance), 

accuracy was not a good measure of classification (classification accuracy is likely to be high due to 

the majority no-movement class). Thus, we assessed different ML techniques using metrics like the 

True Positive (TP) rate and False Positive (FP) rate. Results revealed that the C4.5 decision tree had 

the highest TP rate (= 61%) and a low FP rate (= 2%) among all algorithms. Thus, C4.5 decision 

tree algorithm performed best among the different classifiers. As part of our future research, we 

plan to explore some techniques to correct the class-imbalance in data and improve our current 

predictions. Additionally, since our data is a time series, we also plan to investigate time-series 

forecasting using traditional and deep-learning models in future. 
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Introduction 

Landslides cause a lot of damages to life and property, block roads, and disrupt the transportation of 

goods and services especially in the Himalayan Region of India (Chaturvedi, Shrivastava, & Kaur, 

2017). For places at very high altitudes, where everything from food to clothing is imported from 

cities, blocking of roads due to landslides is a critical problem. Some of these reasons, including 

others, make landslide prediction a problem that needs to be addressed at the earliest. 

Machine-learning (ML) techniques, i.e., techniques that enable computers to learn patterns in data 

have been gaining a lot of popularity across several real-world domains (Brenning, 2015). In fact, 

ML algorithms have recently been used in predicting landslides (Agrawal, Baweja, Dwivedi, Saha, 

Prasad, Agrawal, Kapoor, Chaturvedi, Mali, Kala, Dutt, 2017; Catani, Lagomarsino, Segoni, & 

Tofani, 2013). These attempts have not only been able to enhance the accuracy of prediction, but 

they have also made the interpretability of different factors involved in triggering a landslide much 

clearer (Catani et al. 2013). With the widespread use of ML algorithms and the advent of very high 

computational power, machine-learning techniques have become a more analytics-friendly tool 

compared to the physics- and geology- based traditional mathematical tools for predicting landmass 

movement (Agrawal et al.  2017). 

Recent ML research (Pham, Bui, Pourghasemi, Indra, & Dholakia, 2017; Goetz, Brenning, 

Petschko, & Leopold, 2015; Bui, Pradhan, Lofman, & Revhaug, 2012) emphasized on predicting 

landslides at a daily-scale; however, little research has been done on predicting landslides at a 

minute-scale. Predicting landslides at a minute-scale is important as the minute-scale predictions 

help to warn people about impending landslides promptly. This real-time tracking can also be very 

helpful in knowing how active a site could be regarding its susceptibility to landslides. Furthermore, 

machine-learning algorithms could also help us understand the rate of change in site-specific soil 

and weather properties, which contribute to triggering of soil movement. 

The primary goal of this paper is to predict site-specific soil-movement at the minute-scale by using 

traditional ML techniques. We use several ML algorithms like logistic regression (Brenning et al. 

2005), C4.5 decision trees (Quinlan, 1986), Naïve Bayes (Pham et al. 2017), random forests 

(Breiman, 2001), and Support Vector Machines (Vapnik, 1998) for predicting soil-movement at 

minute-level. The data used in this study was collected using sensors deployed at one of the 

landslide-prone sites in Kamand, Himachal Pradesh. Since landslides are a rare phenomenon, the 

instances where soil-movements are recorded (positive class) are relatively smaller compared to 
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instances where soil-movements are not recorded (negative class). In such class-imbalanced 

datasets, accuracy maybe a misleading performance measure for evaluation (accuracy is likely to be 

high due to many instances of the negative class). Thus, we use more specific performance 

measures like the true-positive (TP) rate and the false-positive (FP) rate for evaluating the 

performance of different ML techniques.  

In what follows, first, we provide a brief overview of the research that has been conducted on 

sensors for real-time monitoring of on-site soil and weather properties. This overview is followed 

by a description of traditional ML techniques that have been popularly used in literature. Next, we 

detail the study area and data collected from the study area using different sensors. Then, we 

provide a comparison of different ML techniques in accounting for soil-movement at a minute-scale 

at the study area. Finally, we close the paper by highlighting the implications of our results for 

predicting soil-movement at a minute-scale. 

Previous Work 

Prior research has used different methods for site-specific real-time monitoring of soil properties, 

soil movement, and weather (Ramesh, 2014). Some of these methods include visual interpretation 

of stereoscopic aerial photographs (Podolszki, 2014), satellite technology (Pham et al. 2017), 

unmanned aerial vehicles (UAVs) – based remote sensing (Neithammer, James, & Rothmund, 

2012), digital-elevation models (DEMs) from airborne laser altimetry data (Mckean & Roering, 

2004), and Brillouin optical time-domain reflectometry (BOTDR) (Zhang, Bin, & Hong-Zhoung, 

2004). In India, several research organizations like Geological Survey of India, Central Building 

Research Institute, Defence Terrain Research Laboratory, and Amrita University have worked in 

the field of landslide monitoring and warning using sensors and systems for monitoring various soil 

and weather parameters (Kanungo, Maletha, Singh, & Sharma, 2017). However, the cost of these 

sensors and systems is presently very high, and the accuracy of these systems are unknown for 

minute-scale landslide predictions. These limitations restrict the large-scale deployment of current 

landslide monitoring sensors and systems in the real-world (Chaturvedi et al. 2017; McKean et al. 

2004). 

Furthermore, there have been several studies that have used certain state-of-the-art machine 

learning technique for predicting soil movements (Catani et al. 2013; Goetz et al. 2015; Mathew, 

Babu, Kundu, Kumar, & Pant,  2014; Pham et al. 2017). For example, one of the attempts has used 

machine-learning algorithms like Multilayer Perceptron, Functional Trees, and Naïve Bayes models 

for mapping susceptibility of 430 landslides locations using attributes like slope angle, slope aspect, 

elevation, and rainfall (Pham et al. 2017). Another attempt has shown that Random Forests, an 
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ensemble technique, performs better than other machine-learning techniques for landslide 

susceptibility mapping (Catani et al. 2013; Goetz et al. 2015). Furthermore, some researchers have 

used a logistic regression model for predicting the slope-failure initiation using the antecedent 30-

day and 15-day rainfall (Mathew et al. 2014). This logistic-regression model is further validated 

through the Receiver Operating Characteristic (ROC) curve analyses using a set of samples which 

had not been used for training the classifier. The model showed an accuracy of 95.1% (Mathew et 

al. 2014). Subsequently, Agrawal et al. (2017) have predicted landslides on a daily-scale and have 

used several machine-learning algorithms along with class-imbalance correction techniques to 

improve the efficacy of their classifiers. While these studies prove that machine-learning techniques 

have shown promising results in predicting soil movements on a daily-scale, little research has 

taken place that investigates the problem of predicting landslides at a minute-scale. Minute-scale 

predictions are important to timely warn people about landslides. 

In this paper, we use low-cost sensor technology for sensing different weather and soil parameters 

in real-time at a minute-scale. Furthermore, we investigate different ML techniques for predicting 

landslides in a minute-scale. As part of this study, we compare five different machine-learning 

algorithms that include logistic-regression (Brenning et al. 2005), C4.5 decision trees (Quinlan et 

al. 1986), Naïve Bayes (Tien Bui et al. 2012), random forests (Breiman et al. 2001), and support 

vector machines (Vapnik et al. 1998). We evaluate the performance of these algorithms using the 

standard 10-fold cross-validation technique, where data is randomly and repeatedly divided into 

non-overlapping training and test sets (Duda, 2014). The choice of these machine-learning 

algorithms is based upon their prior use for landslide predictions (Catani et al. 2013; Goetz et al. 

2015; Mathew et al. 2014; Pham et al. 2017). As decision-tree algorithms have performed well at 

predicting landslides at a daily-scale (Catani et al. 2013; Goetz et al. 2015), we expected that the 

Decision Tree and Random Forest algorithms would perform well in predicting soil movement at a 

minute-scale. Also, decision-tree algorithms are much easier to interpret compared to other 

machine-learning techniques, and this feature makes them apt for understanding factors that 

contribute to triggering of soil movements. 

Landslide site and data collection 

The dataset used for this research has been collected from a landslide-prone hill located on the 

Indian Institute of Technology Mandi campus at Kamand, Himachal Pradesh (see Figure 1A). An 

initial site inspection revealed that a crack had started developing on the top of the hill at the 

selected site and a small section of the soil mass had started separating from the hill mass (see 

Figure 1B).  
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Figure 1. Pictures of the selected landslide site at Kamand, Himachal Pradesh. A. Elevation view of 

the landslide site. B. Cracking of the soil at the top of the selected landslide. Different wired low-

cost sensors can be seen deployed on the sliding soil mass beyond the crack. 

To study the patterns of soil-movement at the site, we buried different sensors on top of the hill and 

data was collected by these sensors every 11-minutes. The system consisted of two types of sensors: 

surface sensors and buried sensors. The surface sensors included the following: temperature and 

humidity sensor, barometric-pressure sensor, light-intensity sensor, and a rain gauge. The buried 

sensors included the following: soil-moisture sensor, a force sensor, and an accelerometer. The soil-

moisture sensor used the resistance property to measure water content in the soil surrounding its 

electrodes. Resistance is inversely proportional to soil moisture and output voltage. When the 

sensor was dry, a high value of resistance is recorded. Force sensor measured the pressure (in 

Newton) due to the internal pressure caused by soil and moisture. Temperature and humidity 

sensors measured temperature in °C and humidity in the percentage of water vapor in the air. The 

soil-moisture sensor measured the volume of water in the soil in a thin cylindrical volume 

surrounding the sensor probes. Similarly, light and pressure sensors sensed the induced light in lux 

and atmospheric pressure in kilo-Pascal (kPa). Rain gauge measured rain (in inches) on the site 

every 11-minutes. One of the sensors used in this study, i.e., the accelerometer was programmed 

differently. The accelerometer was programmed in such a way that whenever it recorded movement 

in the soil, the rate of change of the angular position (i.e., angular velocity, Ω) was measured. The 

accelerometer sensor reported values as a vector where the first three tuples corresponded to the 

three x-, y-, and z-axes acceleration components. Also, the next three tuples sensed non-zero 

angular velocity (Ω) along three axes (Ωx, Ωy, Ωz). Whenever any soil-movement was observed, the 

angular rotations were summed in these three tuples (Ωx, Ωy, Ωz). Every 11-minutes these tuples 
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were reset to record fresh accelerations and angular movements for a new 11-minute cycle. Every 

sensor used in the study has been calibrated and validated as per the field conditions (Mali, 

Chaturvedi, Dutt, Kala, 2017). The data collection at the site was done over a 10-day monsoon 

period between 11
th

 August 2017 and 21
st
 August 2017. The dataset contained 842 data points, 

where each point recorded different sensors values every 11-minute. We discuss the data-cleaning 

and preprocessing techniques in the next section followed by a brief description of machine-

learning classifiers that we have used in this study.  

Methodology 

In this section, we describe the techniques that we used for cleaning the data before feeding it to the 

machine-learning classifiers. Next, we discuss the machine-learning algorithms used in this study. 

Finally, we mention the performance metrics used for evaluating the performance of different ML 

algorithms. 

1. Data Cleaning 

A validation process was run on the collected sensor data to validate the recorded rain 

accumulation, temperature, and humidity values. This validation was done from multiple weather 

websites as well as another local weather station installed at Kamand, Himachal Pradesh. These 

additional data sources helped us validate weather data collected from our sensors was accurate. 

Also, we performed proper calibration of buried sensors before installing them on site. The 

calibration ensured that the data reported by these sensors were accurate.  

A machine-learning problem can typically be defined as a mathematical function which takes in 

input variables (independent variables) and outputs a decision variable (in our case, the decision is a 

value of “Yes (Y)” for soil-movement and a value of “No (N)” for no soil-movement). A data 

instance was labeled as ‘Y’ if any of the x-, y-, or z- angular velocities were non-zero. Thus, the 

decision variable that we used for classifying soil-movements can be mathematically expressed as: 

                    

Where       is the decision variable. If       , then we classified an instance as Y or soil-

movement else we classified it as N or no soil-movement. Thus, the      was the decision variable 

and all other sensed data like temperature, humidity, light-intensity, soil-moisture, and force were 

the independent variables that contributed in the formation of the machine-learning problem. It is 

important to note that accelerations, pitch, and roll were not taken as input variables to predict soil-
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movement because these values are directly correlated to      and the presence of these attributes 

may make different classifiers biased.  

2. Machine-learning Algorithms 

Here, we discuss different machine-learning approaches that have been successful in the past to 

predict landslides with higher accuracies. In this paper, we have compared several popular machine-

learning techniques like logistic-regression (Brenning et al. 2005), C4.5 decision tree (Quinlan et al. 

1986), Naive Bayes (Tien Bui et al. 2012), random forest (Breiman et al. 2001), and support vector 

machine with a non-linear polynomial kernel function (Vapnik et al. 1998).  

Logistic regression has been particularly used in modeling landslides as it provides a probability of 

landslide occurrence against every data point using the logit model (Brenning et al. 2005). This 

algorithm has been widely used in landslide susceptibility mapping (Mathew et al. 2014). A 

decision tree is a hierarchical model composed of decision rules that recursively split independent 

variables into zones such that each maximum time balance in each split is achieved (Quinlan et al. 

1986). The advantage of decision trees is that they can handle categorical as well as numeric 

variables and can incorporate them without strict assumptions on data (Tien Bui et al. 2012). In this 

study, we have used the J48 algorithm which is a Java implementation of the C4.5 algorithm (E. 

Frank, Hall, & Witten, 2016). The C4.5 uses an entropy-based measure as the attribute selection 

criteria on the tree nodes, and it is the same as the ID3 algorithm (Quinlan et al. 1986). Given a 

training dataset T with subsets T_i, i = 1,2,...,s, the C4.5 algorithm constructs a decision tree using 

the top-down and recursive-splitting technique starting with attributes with the maximum gain 

(Quinlan et al. 1986).  

A Naïve Bayes (NB) classifier is a classification system based on Bayes' theorem that assumes that 

all the attributes are fully independent and give the output class, called the conditional 

independence assumption (Tien Bui et al. 2012). The main advantage of the NB classifier is that it 

is very easy to construct without needing any complicated iterative parameter estimation schemes 

(Tien Bui et al. 2012). In the case of NB classifier, the probability is first calculated for each output 

class (Y, N), and the classification is then made for the class with the largest posterior probability. 

Random forest (RF) is an ensemble technique that utilizes many classification trees (a ‘forest’) to 

stabilize the model predictions (Breiman et al. 2001). The RF algorithm exploits random binary 

trees which use a subset of the attributes through bootstrapping techniques: From the original 

dataset a random selection of the attributes is performed and used to build the model, the data not 

included is referred to as “out-of-bag” (OOB) (Breiman et al. 2001). Each tree is developed to 

minimize classification errors; but, the random selection influences the results, making a single-tree 
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classification very unstable. For this reason, the RF method makes use of an ensemble of trees (the 

so-called “forest”) thereby ensuring model stability (Breiman et al. 2001). The RF algorithm has 

been used in landslide predictions domain and susceptibility modeling by several studies (Goetz et 

al. 2015; Catani et al. 2013).   

Support Vector Machine is a supervised learning method based on statistical learning theory and the 

structural risk minimization principle (Vapnik, 1998). Using the training data, SVM implicitly maps 

the original input space into a high-dimensional feature space. Subsequently, in the feature space, 

the optimal hyperplane is determined by maximizing the margins of class boundaries. We chose a 

non-linear polynomial kernel function in this paper since it has outperformed other kernels in prior 

research (Vapnik,  1998).  

While each of these machine-learning algorithms could be used with a variety of settings and 

procedures for model selection, we chose configurations that we have considered typical based 

upon prior applications. All techniques mentioned above were run in the Java-written Weka 

package with default parameter settings and using a 10-fold cross-validation approach (Frank et al. 

2016; Duda, 2004). 

3. Analysis Methodology 

Accuracy is the most straight-forward way to describe the performance of classifiers. It is defined as 

the ratio of instances (both positive and negative) correctly classified by the total number of 

instances present in the dataset. However, accuracy can be misleading in predicting natural hazards 

like landslides (Batista, Prati, & Monard, 2004). That is because soil-movement (landslide) 

occurrence is a rare phenomenon. This property makes landslide-prediction a class-imbalanced 

problem. In our study, the distribution of the two classes, i.e., Y and N, are 13% and 87%, 

respectively. If a trained classifier is biased towards the N class and labels each instance as 

belonging to the N class, then the classifier’s accuracy would be 87%. As a classifier may not 

accurately predict the Y class and still may have a high accuracy, we used more specific 

performance measures like true-positive (TP) rate and false-positive (FP) rate to compare different 

classifiers (Batista et al. 2004). The TP rate is the percentage of landslide instances correctly 

classified by the classifier as landslides, and the FP rate is the percentage of no-landslide instances 

that are classified as landslides by the classifier. Thus, it is desirable for a classifier to possess a 

high TP rate and a low FP rate. In the next section, we present the results from different classifiers 

using a ten-fold cross-validation approach.  
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Results 

In this section, we report the results of each classifier and their comparison incorrectly predicting 

the soil-movements in the dataset.   

Table 1 shows the ten-fold cross-validated results from different classifiers. We can observe that the 

highest accuracy was obtained for C4.5 decision tree followed by logistic regression. Regarding 

interpretability, C4.5 decision tree is a very user-friendly technique as we can print the decision tree 

to see the attributes (in levels) that were picked up by the algorithm for classifying the data. Other 

classifiers also produced a high accuracy; however, accuracy is likely a biased measured due to the 

class-imbalance present in the dataset. Thus, next, we evaluated the TP and FP rates to compare 

different classifiers. 

Table 1: Ten-fold cross-validation comparisons of different classifiers on the landslide dataset 

Classifier Accuracy True Positive Rate False Positive Rate 

Logistic Regression 92.16 0.48 0.01 

C4.5 Decision Tree 92.87 0.61 0.02 

Naïve Bayes 91.45 0.53 0.28 

Random Forests 89.07 0.17 0.01 

Support Vector Machines 90.26 0.27 0.001 

 

Table 1 shows that the C4.5 decision tree had the highest TP rate of 0.63 followed and a moderately 

low FP rate 0.02. This result indicated that C4.5 decision tree is 63% of the times correct in 

predicting soil-movement and at the same time has a relatively low a false-alarm rate. Such a 

combination is desirable in the landslides prediction domain as we want both the true-positive rate 

to be high and the false-positive rate to below. The Naïve Bayes algorithm had the second highest 

TP rate of 0.53; however, with a relatively high FP rate of 0.28. These results suggest that while the 

Naïve Bayes algorithm accurately predicted the soil-movement more than 50% times, it 

misclassified no-landslides as landslides in 28% of the instances. Lastly, both Support Vector 

Machines and Random Forests had very low FP and TP rates, which indicated that almost all the 

instances in the dataset were classified as belonging to the N class by these classifiers. 

C4.5 Decision Tree 

Figure 2 shows the resulting C4.5 decision tree for predicting soil-movement in the data set. As can 

be seen in Figure 2, the decision tree suggested that the primary attribute for distinguishing 

movement class from the no-movement class was the rain recorded in the last 11-minutes. This 

result shows that rain was one of the primary reasons for triggering soil movements at the chosen 

location. On descending further one can observe that force (pressure due to moist soil), humidity, 
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temperature, and time were other important attributes in the decreasing order of importance. 

Interestingly, other variables like light and soil-moisture did not enter the decision tree. Thus, their 

variables did not influence the soil movement as much compared to other attributes. 

To understand the structure of the tree, we used a depth-first search approach wherein we descended 

along one path of the tree and inferred each node as we proceed. Thus, if no rain has been recorded 

and if no force has been recorded, then the movement of soil is unlikely. In contrast, if the force is 

non-zero, but rain is zero, then humidity is used as a splitting attribute. One can observe in the 

structure that force occurs three times along the route with different critical thresholds and each 

successive threshold is always greater than the preceding one. This result is notable as it may 

suggest that three different forces can attribute to three different magnitudes of soil-movement, i.e., 

no-movement, moderate movement, and severe movement extending the scope for future research, 

i.e., a multi-class problem. Furthermore, higher thresholds of humidity and temperature along this 

path suggest that soil-movements were more likely when the temperature and humidity were higher 

than 26ºC and 69%, respectively. This result indicated that soil-movements were more abundant in 

higher levels of relative humidity and temperatures. Finally, time was accounted as a factor for 

splitting the dataset along this route, where the threshold was 3:15 am. This result suggested that 

movements were more likely to occur after 3:15 am than earlier on the site. 

On traversing the tree from the top towards the right branch, one can observe that force (pressure 

exerted by moist soil) was an important attribute in the tree. A non-zero force coupled with non-

zero rain was indicative of soil-movement as per this route. Finally, if the force was non-zero, then 

time was used as the final attribute. The critical time calculated by the C4.5 algorithm along this 

route was 2 pm, i.e., soil-movements were likely to occur if the time of the day was greater than 2 

pm than otherwise.        

 



ILC2017_NO_33 

11 

 

Fig 2: Decision Tree produced by C4.5 algorithm with Ten-Fold Cross-Validation 
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Discussion and Conclusions 

Till recently, machine-learning (ML) techniques had been used to predict landslides on a daily scale 

(Goetz et al. 2015; Catani et al. 2013). In this paper, our primary goal was to try different ML 

algorithms to make minute-scale predictions for soil-movements at a landslide site at Kamand, 

Himachal Pradesh. We compared and evaluated the performances of five different ML algorithms 

that have proven to work well in prior research predictions (Pham et al. 2017; Goetz et al. 2015; 

Mathew et al. 2014; Catani et al., 2013). We observed that C4.5 decision tree algorithm 

outperformed other machine-learning techniques in predicting soil-movements at the minute-scale. 

This result agrees with prior literature, where non-parametric algorithms like Random Forest and 

C4.5 decision tree had performed accurately for daily-scale prediction of landslides (Pham et al. 

2017; Goetz et al. 2015). 

In the C4.5 decision tree algorithm, we found that rain and force (pressure due to moist soil) were 

listed as the top decision attributes in splitting the movement and no-movement classes. A non-zero 

force and non-zero rain were predicted movement class; whereas, both zero rain and zero force 

were predicted as a no-movement class. This result may seem primitive; however, it is important as 

it confirms our key hypothesis that rainfall and soil-pressure were relevant indicators of soil-

movements. Furthermore, force occurred at three different levels of the tree and, on each 

succeeding level, the critical threshold of force was greater than the preceding one. Although we 

can only speculate currently, this result perhaps indicates that the three different levels of soil-

pressure thresholds likely correspond to the three different magnitudes of soil-movements occurring 

at the site. This speculation needs to be tested as part of future research. Lastly, two attributes 

namely light-intensity and soil-moisture did not enter the decision tree. This result indicates that 

these sensed values were not important for evaluating soil-movements on a minute-scale at the 

selected site compared to the other attributes. One explanation for this discrepancy could be the 

presence of consistent seepage of water from other internal sources along the hill at the chosen site 

(this water seepage was revealed upon a preliminary inspection of the site). This internal seepage of 

water could result in consistently high moisture-values irrespective of the moisture added by rainfall 

at the site. Another explanation could be that the rainfall attribute, which measured the rainfall 

falling at the site, accounted for soil-moisture indirectly as well. While light-intensity may not be a 

relevant factor for evaluating soil-movements, however; soil-moisture, as per our expectation and 

prior research, could become a key factor in determining soil-movements at other locations. This 

factor needs to be investigated more thoroughly as part of future research. 

Furthermore, this study also shed light on the methodology to follow while evaluating the 

performance of different machine-learning classifiers in real-world data sets involving class 



ILC2017_NO_33 

13 

imbalance. In cases of class imbalance, the accuracy is likely to be high, and one needs to rely upon 

specific performance measures like true-positive rates and false-positive rates for evaluating 

machine-learning algorithm’s performance. These measures enable us to check the performance of 

classifiers across both negative and positive instances of a binary classification problem.  

There are several ideas as part of future research that could help us improve our current results. 

First, we plan to deploy our sensors on several other landslide-prone sites beyond the one selected 

in this paper. We then plan to use the C4.5 trained decision tree on different datasets to measure the 

robustness of the algorithm. Subsequently, we plan to integrate site-specific different data sets 

collected from different hills and combine them into a unified dataset. This unified dataset could 

have several soil properties like texture, structure, pore space, and consistency. Also, these 

properties could be supported by other properties like local weather, lighting, soil-moisture, and 

force.     

Second, as part of our future research, we would like to emphasize on evaluating time-series 

forecasting techniques like the Auto-Regressive Moving Average (ARIMA) model (Khashei & 

Bijari, 2011) and recurrent neural networks like Long-Short Term Memory (LSTM) models 

(Mikolov, Karafiát, Burget, Cernocký, & Khudanpur, 2010) for soil-movement predictions. 

ARIMA models have been widely used in financial forecasting where the data is a time-series, like 

our landslide dataset (Khashei & Bijari, 2011). Similarly, LSTM models, which keep a record of the 

memory of events and how this memory affects the current predictions, have been used in 

predicting health outcomes (Mikolov et al. 2010; Kaushik, Choudhury, Dasgupta, Natarajan, 

Pickett, & Dutt, 2017). Furthermore, we would also like to use more sophisticated performance 

measures for model comparison as part of our future research. Measures like Area under the 

Receiver Operator Characteristics (ROC) curve (Japkowicz & Stephen, 2002) and sensitivity-index 

(d’) (Macmillan & Creelman, 2010) may provide alternate performance measures for comparing the 

performance of different ML techniques. 
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