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Abstract— Prior research has used reinforcement-learning 

(RL) models like Expectancy-Valence-Learning (EVL) and 

Prospect-Valence-Learning (PVL) to investigate human decisions 

in choice games. However, currently little is known on how RL 

models would account for human decisions in games where 

people face a collective risk social dilemma (CRSD) against 

societal problems like climate change. In CRSD game, a group of 

players invested some part of their private incomes to a public 

fund over several rounds with the goal of collectively reaching a 

climate target, failing which climate change would occur with a 

certain probability and players would lose their remaining 

incomes. Next EVL and PVL models were calibrated to human 

decisions across two between-subject conditions in CRSD (Info-

all: N=120; No-Info: N=120), where half of the players in each 

condition possessed lesser wealth (poor) compared to the other 

half (rich). A symmetric Nash model was also run in both 

conditions as a benchmark. In Info-all condition, players 

possessed complete information on investments of other players 

after every round; whereas, in the No-info condition, players did 

not possess this information. Our results showed that for both 

rich and poor players, the EVL model performed better than the 

PVL model in No-info condition; however, the PVL model 

performed better than the EVL model in the Info condition. Both 

the EVL and PVL models outperformed the symmetric Nash 

model. Model parameters showed reliance on recency, reward-

seeking, and exploitative behaviours. We highlight the 

implications of our model results for situations involving a 

collective risk social dilemma. 

Keywords— Collective risk social dilemma, decision-making, 

reinforcement-learning, Expectancy-Valence-Learning model, 
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I. INTRODUCTION 

Climate change is a global phenomenon and, since the late 
19

th
 century, Earth’s average surface temperature has already 

risen by about 1.8 degrees Fahrenheit (1.0 degree Celsius) [1]. 
Although the average surface temperature has been increasing 
and this increase poses a threat to mankind, people continue to 
show a waiting approach towards climate change [2-4]. This 
waiting approach has been prevalent in climate negotiations 
and a likely reason for this approach could be the dilemma that 
people face when they need to decide whether to keep their 
private wealth to themselves or to contribute some part of it for 
mitigating climate change [5-9].  

Prior research has used a collective risk social dilemma 
(CRSD) game to study climate negotiations in the laboratory 
[6-7, 9]. In CRSD, a group of six-players are provided with 
initial private endowments that they can contribute for 

mitigating climate change across several rounds. In each round, 
all players contribute either 0, 2, or 4 units against climate 
change, and after all players have decided their investments, all 
players get to know how much other players contributed in the 
last round and since the beginning of the game. The first three 
rounds are operated by a computer, where three randomly 
chosen players are made to contribute 4 units (poor players) 
and the other three players are made to contribute 0 units (rich 
players). All players need to collectively reach a climate goal 
after 10-active rounds of investments, where players decide the 
investments themselves. If players fail to collectively reach the 
target, they lose their leftover endowments completely with a 
probability because of climate change.  

Prior literature has used the CRSD game to test the effects 
of varying endowments and pledges on investments against 
climate change [9]. However, this literature assumed that 
players got full-information about other players’ investments 
[9]. Reference [6] extended this information limitation and 
tested how information availability influences investments in 
the CRSD game. Specifically, [6] presented two conditions to 
their participants, where the conditions differed in terms of 
information available about investments to different players 
(rich and poor). Reference [6] found that possessing 
information about investments of other players produced an 
overall higher investment to the climate fund and higher 
success rates. Although there are differences in people’s 
investment behaviour in the presence or absence of investment 
information, little is known on how different underlying 
cognitive mechanisms contribute to these investment 
differences. One way of studying the influence of underlying 
cognitive mechanisms is to develop computational cognitive 
models [10]. 

The primary objective of this research is to understand how 
certain reinforcement learning (RL) mechanisms in cognitive 
models account for people’s decision-making in the CRSD 
game in the presence or absence of investment information. 
Specifically, we use two computational cognitive RL models 
[11-14] to account for people’s decision-making in the CRSD 
game: Expectancy-Valence-Learning (EVL) [15] and Prospect-
Valence-Learning (PVL) [16]. EVL model has three 
parameters, where one parameter each account for people’s 
loss-aversion, recency, and explorative-exploitative behaviours. 
The PVL model improves the EVL model with an additional 
fourth parameter from Prospect Theory [17], where this 
additional parameter captures the shape of people’s utility 
function for losses and gains. In this paper, we use the EVL and 
PVL models to account for people’s investment decisions in 



the presence and absence of investment information in the 
CRSD game. 

In what follows, first, we detail background literature. Next, 
we propose the EVL and PVL models in the CRSD game and 
detail how we calibrated different model parameters in each of 
the two information conditions in CRSD. Finally, we discuss 
our results and highlight their implications for decisions in 
collective risk social dilemma situations. 

II. BACKGROUND 

A. EVL and PVL Models 

Prior research has used the EVL and PVL models in choice 
tasks [14]. For example, [14] used both the EVL and PVL 
models to understand the decision-making of different 
population (brain-damaged subjects, drug-abusers, Asperger 
subjects, and older-aged subjects) on the Iowa Gambling Task 
(IGT) [18]. Reference [19] have tested variations of the EVL 
and PVL models by calibrating these models to each 
participant’s choices in choice tasks. Furthermore, [20] have 
examined the impact of losses on expensive exploratory search 
in a binary choice tasks using EVL and PVL models. Reference 
[21] investigated the exploration behaviour before making final 
decisions in binary-choice tasks using the EVL and PVL 
models. These authors found that losses caused more 
exploration compared to gains and the PVL model 
outperformed the EVL model in fitting human exploration 
behaviour. 

Prior research involving IGT has revealed that among both 
the EVL and PVL models, the PVL model and its variants fit to 
human data better compared to the EVL model [11, 12, 16, 22, 
23]. For example, [11] found that an alternate utility function in 
the PVL model helped this model to provide a better fit to 
human decisions in IGT. Similarly, [16] calibrated different 
variants of the PVL model to different classes of drug users. 
These authors found that the PVL model and its variants 
explained the data better compared to heuristic rules. Reference 
[22] employed the PVL model to decompose IGT performance 
into component processes in healthy and marginally housed 
persons with substance use disorders (MHP-SUD). Application 
of the PVL model revealed a better fit to human data in IGT 
among MHP-SUD subjects. Furthermore, [24] have used the 
EVL and PVL models to assess motivational, memory, and 
response processes among chronic cannabis abusers and 
control participants. These authors found a variant of the PVL 
model to perform better in fitting human data in IGT compared 
to the EVL model. 

Although a number of prior attempts have investigated 
EVL and PVL models in the IGT and binary-choice tasks, to 
the best of authors’ knowledge, there is still lack of research 
that investigates these models in applied judgement tasks 
involving multiple players. In this paper, we address this 
research question by proposing EVL and PVL models for the 
CRSD game and investigating the performance of these models 
to fit human data collected in the CRSD game. 

B. Collective Risk Social Dilemma (CRSD) 

A collective-risk social dilemma implies that personal 
endowments will be lost if the collective group contributions to 
a common pool are too small [7, 25]. Reference [7] proposed a 
CRSD game in connection to climate change to investigate a 
group’s contribution to reach a target knowing that climate 
change could occur with a probability if the group failed to 
reach the target. Results revealed that under high risk of 
simulated dangerous climate change, half of the groups 
succeeded in reaching the target sum, whereas the others only 
marginally failed. Recently, [26] investigated how residual risk 
of failure of climate change policies affects willingness to 
contribute to such policies in CRSD. These authors found that 
investments were higher at least in the final part of treatments 
including a residual risk. In this paper, we calibrate the EVL 
and PVL models possessing different cognitive parameters to 
players’ investments in the CRSD game.  

III. AN EXPERIMENT INVOLVING INFORMATION ASYMMETRY IN 

CRSD 

A. Experimental Design 

Participants were randomly assigned to different groups of 
six-participants each across two between-subject conditions in 
a laboratory experiment: Info (N = 20 groups) and No-info (N 
= 20 groups). In Info condition, after each round, all players 
were provided information about other players’ individual 
investments in the last round as well as information about the 
cumulative investments of the entire group since the start of the 
game. In the No-info condition, players did not possess 
investment information about other players’ individual 
investments in the last round. However, players were provided 
information about the total cumulative investment of the group 
since the start of the game. 

B. The CRSD Game 

 In CRSD, players have to collectively reach a target failing 
which they lose their personal endowments with a probability. 
A group of six-players are provided with initial private 
endowments (= 52 units) that they can invest to a public fund 
for mitigating climate change across 13-rounds. In each round, 
all players invest either 0, 2, or 4 units from their initial 
endowment against climate change. After all players have 
decided their investments in a round, all players are provided 
feedback. As part of the feedback, players may or may not get 
to know about other players’ investments in the last round. 
However, all players are provided feedback about their group’s 
cumulative investments since the beginning of the game. There 
is a total of 13-rounds in CRSD, where the first three rounds 
are operated by a computer. In the first three rounds, three 
randomly chosen players are made to contribute 4 units (poor 
players) and the other three players are made to contribute 0 
units (rich players). All six players need to collectively reach a 
climate target (= 156 units) after 10-active rounds of 
investments (from round 4 to round 13), where players decided 
the investments themselves. If players were successful in 
reaching the climate target, then they could keep their leftover 
endowments in real money as per a conversion rule. However, 
if players fail to collectively reach the climate target, then they 



would lose their leftover endowments completely with a 50% 
probability of climate change. 

C. Participants 

There were 240 students recruited through an email 
advertisement for a climate change study at the Indian Institute 
of Technology Mandi, India. Students were randomly divided 
into 40 groups of 6 participants each (i.e., 20 groups per 
condition). Participants were undergraduate and graduate 
students in computer engineering, mechanical engineering, 
electrical engineering, basic sciences, and humanities and 
social sciences. Age ranged from 18 years to 31 years (Mean = 
20 years; Min = 18 years; Max = 31 years). Two hundred and 
sixteen participants were males and rest females. Participants 
were paid as per the following rule: INR 30 as base payment 
and a performance bonus. The performance bonus was 
computed using participants’ left-over endowments as per the 
following formula: 1-unit endowment left = INR 0.50 left in 
real money. 

D. Procedure 

Participation was voluntary, and participants signed a 
consent form before starting their experiment. First, 
participants provided their demographic information and read 
the instructions related to the study. This step was followed by 
game play where participants were asked to play CRSD game 
in their group for 13-repeated rounds. After completing the 
study, participants were thanked and paid their compensation. 
Results of this experiment will be presented with model results 
ahead in this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. EVL AND PVL MODELS 

Table 1 shows the equations for the utility function, 
learning rule, choice rule, and sensitivity in the EVL and PVL 
models [12]. In the CRSD game, people can contribute an 
outcome k, where k ε {0 units, 2 units, or 4 units} on a round t. 
First, in any round t, in both models, we calculate the utility 
functions for different possible contributions k (0, 2, or 4) 
using the appropriate equations and parameters shown in 
Table 1. The EVL and PVL models start-off with a utility 
equation wherein it is important to specify the win and loss 
that any decision-maker receives along the game. At any 
round t, the win function W(t) is defined as the player’s 
remaining endowment after making t-1 investment decisions 
in CRSD. Mathematically, W(t) = Initial endowment – Sum of 
investments made till t-1 rounds. Similarly, the loss function at 
any round t is calculated by taking the minima of the 
investments all other players made subtracted by their own 
decision at round t. Mathematically, L(t) = Min (Investment at 
round t by all other players) – Investment by the player at 
round t. 

After defining the win and loss functions for any round t, 
we can calculate the utility, learning, and choice rules for both 
EVL and PVL models from Table 1. In the EVL model, the w 
parameter (the loss-aversion parameter), is the weight that 
participants assign to losses relative to gains [11, 12]. A small 
value of w, i.e., w ≤ 0.5, characterizes decision-makers who 
put more weight on the rewards and can thus be described as 
reward-seeking. Whereas, a large value of w, that is, w > 0.5, 
characterizes decision makers who put more weight on losses 
and can thus be described as loss-averse [16]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. The EVL and PVL models, model parameters, and parameter ranges 



The PVL utility function contains the two parameters—the 
shape parameter, A, and the loss aversion parameter, w [11, 
12]. As A approaches zero, the shape of the utility function 
approaches a step function. In contrast, as A approaches one, 
the subjective utility,   ( ), increases in direct proportion to 
the net outcome, x(t). In the PVL model, a value of w larger 
than one indicates a larger impact of losses than gains on the 
subjective utility; whereas, a value of w of one indicates equal 
impact of losses and gains. As w approaches zero, the PVL 
model predicts that losses will be neglected. Second, in both 
models, we calculate the expected utility (   ( )) as per the 
appropriate learning rule.  This updating process in EVL 
model is influenced by the recency parameter, a [11, 12]. A 
value of a close to zero indicates slow forgetting and weak 
recency effects; whereas, a value of a close to one indicates 
rapid forgetting and strong recency effects. In contrast, in the 
PVL model, a small value of a indicates rapid forgetting and 
strong recency effects. Whereas, a large value of a parameter 
indicates slow forgetting and weak recency effects. For both 
models under consideration, we initialized the expectancies of 
all outcomes (0, 2, and 4) to zero,    ( ) = 0. In the next 
round, the models assume that the expected utilities of each 
outcome are used to guide the choices of participants [11, 12]. 
This assumption is formalized by the softmax choice rule, 
which in both models computes the probability of choosing a 
particular outcome on a round [27].  

The choice rule contains the sensitivity parameter, θ, 

which indexes the extent to which round-by-round choices 

match the expected utilities of different outcomes. In the EVL 

model, the sensitivity parameter θ changes based upon the 

response consistency parameter c. If c is positive, the 

sensitivity of round-by-round choices to the expected utilities 

of different outcomes increases over rounds; otherwise, the 

sensitivity decreases. In PVL model, small values of c cause a 

random choice pattern; whereas, large values of c cause a 

deterministic choice pattern.  

V. SYMETTRICAL NASH MODEL 

Nash equilibria provide optimal solutions in games [28]. In 

the CRSD, there are several Nash equilibria possible as there 

are multiple players and different combinations of investments 

over 13-rounds may achieve a target of 156 units for the 

group. However, one Nash equilibria, which ensures 

symmetry among all players, assumes that all players 

contribute 2 units per round (i.e., 12 units per group per round 

or 156 units across 13-rounds). We use this symmetrical Nash 

model as a baseline to compare the performance of the EVL 

and PVL models. As EVL and PVL possess cognitive 

assumptions, they are likely to outperform the symmetric Nash 

model [28].  

VI. MODEL PARAMETER CALIBRATION 

In both models, we ran the same number of simulated 

participants as the number of human participants that  

 

 

 

participated in the experiment. Next, we computed the Sum of 

Squared Deviation (SSD) using the following formula: 

   (1) 

 

Where                        , 

                                               and 

                      refer to the average cumulative 

investments from model and human players, respectively, in 

round i.  To compare models with different parameters, we 

used the Akaike information criterion (AIC) that takes into 

account both a model’s ability to predict human data and its 

complexity in terms of number of parameters contained [29]. 

The AIC was defined in the following manner: 

               (2) 

Where, k refers to the number of free parameters calibrated 

in a model. For EVL, PVL, and Nash models, the value of k 

were 3, 4, and 0. We used genetic algorithm to minimize the 

AIC values in both EVL and PVL models. The optimization 

ran for a minimum of 250 generations for each model. The 

genetic algorithm has population size = 20, a crossover rate of 

80%, and a mutation rate of 1%. The algorithm stopped when 

any of the following constraints were met: stall generations = 

100, function tolerance = 1x10
-8

, and when the average 

relative change in the fitness function value over 100 stall 

generations was less than function tolerance (1x10
-8

).  

VII. RESULTS 

We analysed the average cumulative investments from 

human data and both EVL and PVL models. First, in 

agreement with [6], the Info condition showed much larger 

investments over rounds compared to those shown in the No-

Info condition. Second, in the Info condition, based upon AIC 

minimization, the PVL model fitted the human data better 

compared to the EVL model for rich and poor players (AICPVL 

(24.412) < AICEVL (78.166)). Third, as expected, the 

symmetric Nash model was outperformed by both the EVL 

and PVL models across both Info and No-Info conditions 

(Info: AICNash (84.471); No-Info: AICNash (83.682)).  In order 

to check the stability of AIC, we also varied individually 

parameters a, w, c and A around their optimum values. Results 

revealed that the AIC did not become flat at the local minima.  

 

Table 2 shows the calibrated values of EVL and PVL 

model parameters for rich and poor players in the Info and No-

Info conditions, respectively. The best set of parameters 

(corresponding to the lowest AIC values) has been italicized. 
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In the  Info condition, the PVL model revealed that rich 

players’ utilities were not much influenced by the net 

outcomes x(t) (the A parameter was close to 0). Second, the 

model showed strong influence of recency among rich players’ 

decisions  the a parameter possessed a very small value). Third 

there was presence of loss-aversion in rich players’ decision- 

-making (the w parameter was far exceeding 1.0). Fourth, rich 

players’ decisions seemed to be deterministic (the c parameter 

possessed a large value). Furthermore, the PVL model 

revealed that poor players’ utilities increased in direct  

proportion to the net outcome x(t)’s increase (the A parameter 

was close to 1). Second, the model showed weak influence of 

recency among poor players’ decisions (the a parameter 

possessed a large value). Third, there was a strong neglect of 

losses among poor players’ decision-making (the w parameter 

was 0). Fourth, poor players’ decisions seemed to be largely 

deterministic (the c parameter possessed a very large value). 

In the No-Info condition, first, the EVL model revealed 

strong influence of recency among rich players’ decisions (the 

a parameter possessed a very large value close to 1). Second, 

there was a strong drive towards rewards and a neglect of 

losses in rich players’ decision-making (the w parameter was 

close to 0). Third, rich players’ decisions tended to be 

deterministic (the c parameter possessed a small value close to 

0). Furthermore, the EVL model revealed strong influence of 

recency among poor players’ decisions (the a parameter 

possessed a very large value close to 1). Second, there was a 

strong drive towards rewards and a neglect of losses in poor 

players’ decision-making (the w parameter was close to 0). 

Third, poor players’ decisions tended to be explorative (the c 

parameter possessed a large positive value). 

VIII. DISCUSSION AND CONCLUSIONS 

Although a number of prior attempt have investigated EVL 

and PVL models in the IGT and binary-choice tasks [12, 21], 

research has yet to explore the potential of these models in 

applied judgement tasks involving multiple players. The 

primary objective of this paper was to overcome this literature 

gap. Specifically, in this paper, we investigated the ability of 

EVL and PVL models to fit human investment decisions in the 

presence or absence of investment information in CRSD. 

Results revealed that in the presence of information about 

opponent’s last investments, the PVL model performed better 

compared to the EVL model in fitting human decisions. 

However, in the absence of information about opponent’s last 

decisions, the EVL model performed better compared to the 

PVL model in fitting human decisions. These results are in 

contrast to those in IGT, where the PVL model and its variants 

have been found to be consistently better compared to the 

EVL model [11, 12, 16, 22, 23]. Both the EVL and PVL 

models outperformed the symmetric Nash model. 

Furthermore, the model parameters best fitting human 

decisions across different conditions revealed differences and 

similarities among rich and poor players’ decision-making 

when investment information about opponents was available 

and not available, respectively. 

First, we found that the PVL model did not consistently 

outperform the EVL model across both information 

conditions. A likely reason for this finding could be the 

differences in the task used in our study compared to those 

used in prior research. In prior research, mostly the tasks used 

involve making choices between available options (e.g., IGT 

and binary-choice). Mostly, these tasks are played by a single 

decision-maker repeatedly. However, the CRSD task in this 

paper was a judgment task involving multiple players, where 

different players in a group had to collectively decide how 

much to invest against climate change repeatedly.  

Second, we found that both the EVL and PVL models 
outperformed the symmetric Nash model in fitting to human 
decisions in CRSD. A likely reason for this finding could be 
the presence of cognitive assumptions and parameters in the 
EVL and PVL models and the absence of such assumptions in 
the Nash model. As explained above, both the EVL and PVL 
models possessed cognitive mechanisms like recency, weight 
to losses versus gains, net outcome’s influence on decision-
maker’s utility, and the reliance on explorative versus 
exploitative behavior. Perhaps, these mechanisms enabled the 



EVL and PVL models to fit human decisions accurately. 
However, the symmetric Nash model seem to rely solely upon 
mathematical (rational) assumptions without any reliance on 
cognitive (bounded-rational) assumptions [28]. Thus, 
deviations of the Nash model from human data basically 
showed people to be bounded rational beings who did not 
invest in a symmetrical manner. 

Third, we found that recency played a dominant role in 
shaping our results among both rich and poor players when 
information about opponents’ investments was known or when 
it was unknown. In fact, recency has been shown to influence 
choice behavior in different tasks, even in those tasks that 
belong to domains other than the environment [30-32]. 
According to [31-32], recency effects show-up in decisions 
from experience tasks via theories of cognition like the 
Instance-based Learning Theory. Thus, the presence of 
recency of information among the EVL and PVL models is in 
agreement with broader literature on judgement and decision-
making involving both single decision-makers [31] as well as 
multiple decision-makers [33]. 

Fourth, we found that reward-seeking behavior and neglect 
of losses seem to be higher when information about 
opponents’ investments was absent compared to when this 
information about opponents’ investments was present. We 
speculate that when opponents’ investments are not shown, 
players are less motivated towards reaching the climate goal. 
This lack of motivation, perhaps, makes them keep their 
endowments to themselves and seek rewards. In addition, the 
presence of information about opponent’s investments may 
likely improve the players’ drive towards the climate goal due 
to social influence [34]. Overall, across most conditions, 
players tend to show reward-seeking behavior to save their 
endowments. 

Fifth, we found that rich (poor) players’ utilities were 
influenced (not influenced) by net outcomes in the information 
condition. One likely reason for this finding could be that rich 
players possess greater endowment compared to poor players 
after the first three rounds in the game. It could be that the 
perception of greater endowments among rich players makes 
the PVL model disregard the net outcome in the game.  

Overall, our results showed deterministic decision-making 
from both rich and poor players in conditions when the 
information about opponents’ investments was present 
compared to when it was absent. However, the lack of 
investment information perhaps does not allow players to start 
trusting this information. Thus, poor players show less 
determinism and more explorative decision-making.  

We did not consistently find a single model (EVL or PVL) 
to explain all experimental conditions. From our results, it 
seems that the PVL model is a better choice compared to the 
EVL model when information about opponent’s decision is 
available. However, the opposite is true when information 
about opponent’s decision is not available. Overall, the EVL 
and PVL models may help us to explore negotiations in CRSD 
over a longer time horizon lasting several rounds. Also, we 
may use EVL and PVL models to predict human performance 
in conditions involving different probabilities of climate 
change and different investment amounts.  

As part of future work, we plan to extend our investigation 
of RL models to other models that either combine the EVL 
and PVL assumptions or those that make more optimal 
decisions. In addition, we would also like to explore the ability 
of RL models to explain experimental conditions where only a 
subset of players possess investment information, i.e., either 
the poor players possess rich players’ investment information, 
or the rich players possess poor players’ investment 
information. Some of these ideas form the immediate next 
steps in our research program involving CRSD. 
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