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Abstract—Landslides cause lots of damage to life and property 

world over. There has been research in machine-learning that aims 

to predict landslides based on the statistical analysis of historical 

landslide events and its triggering factors. However, prediction of 

landslides suffers from a class-imbalance problem as landslides and 

land-movement are very rare events. In this paper, we apply state-

of-the-art techniques to correct the class imbalance in landslide 

datasets. More specifically, to overcome the class-imbalance 

problem, we use different synthetic and oversampling techniques to 

a real-world landslide data collected from the Chandigarh – Manali 

highway. Also, we apply several machine-learning algorithms to the 

landslide data set for predicting landslides and evaluating our 

algorithms. Different algorithms have been assessed using 

techniques like the area under the ROC curve (AUC) and 

sensitivity index (d’). Results suggested that random forest 

algorithm performed better compared to other classification 

techniques like neural networks, logistic regression, support vector 

machines, and decision trees. Furthermore, among class-imbalance 

methods, the Synthetic Minority Oversampling Technique with 

iterative partitioning filter (SMOTE-IPF) performed better than 

other techniques. We highlight the implications of our results and 

methods for predicting landslides in the real world. 

IndexTerms—Landslides, Class-imbalance, SMOTE, SMOTE-

IPF,Random Forest, Sensitivity index, AUC. 

I. INTRODUCTION 

The Himalayan Region has been prone to landslide hazards 

mainly due to its precarious topographic characteristics and 

tectonic dynamism [14]. Landslide causes damage to property, 

blocks roads for days and kills and traps people. For places at 

very high altitude where everything from food to clothing is 

imported from cities, blocking roads is a huge issue. These 

reasons become very supporting evidence for combating this 

problem at the earliest. 

 

Recently, landslide prediction using machine-learning 

techniques have been gaining a lot of popularity [13]. Machine-

learning algorithms have enabled researchers to not only predict 

landslides in advance; but, also improve the understanding of 

causal factors that trigger these natural disasters [13]. While there 

are several factors responsible for triggering landslides; rainfall 

and land geology form the most important factors compared to 

other factors like earthquakes and anthropogenic influences [14]. 

Sixty percent of the total landslides that occurred in the 

Himalayas in 2010 were in the monsoon months extending from 

mid-June to mid-September [14]. 

 

Prior research [14, 21, 29] has investigated the performance 

of several machine-learning classifiers on landslide predictions 

using the historic rainfall-intensity as a primary predictor. 

However; little research has been done towards the problem of 

class-imbalance that landslide datasets inherently suffer from. 

Landslide activity is a rare event: In a typical dataset, the 

numbers of landslide days are likely to be very few compared to 

non-landslide days and this fact makes the positive (landslide 

occurrence) class very small compared to the negative class. This 

imbalance among the two classes would likely make the 

classifier biased towards the majority class leading to classifying 

all the instances in the dataset as belonging to the majority class 

[11]. Thus, the accuracy of the classifier due the majority class is 

very high and this problem is widely known as the class-

imbalance problem. The main objective of this paper is to 

evaluate and compare several class-imbalance techniques based 

upon synthetic or random oversampling to reduce the problem of 

class-imbalance in predicting landslides. 

 

To the best of authors’ knowledge, up to now, class-

imbalance and its influence has not been studied for landslide 

predictions. Although the application of class-imbalance 

techniques for landslide prediction is new, attempts have been 

made in prior literature on applying these techniques to other 

real-world applications (fraud detection,lung cancer detection, 



emotion classification, text classification) for mitigating class-

imbalance using a number of class-imbalance techniques. The 

simplest class-imbalance technique is to resample the original 

dataset. In resampling, the dataset is modified before applying 

machine-learning algorithms. The simplest form of resampling is 

random oversampling [24]. Random oversampling generates new 

minority class-instances in the dataset by randomly selecting any 

one minority instance and duplicating it till the dataset is 

balanced, i.e., there is equal number of instances for both the 

positive and negative class [24]. Beyond random oversampling, 

there are other sophisticated forms of resampling proposed in the 

literature which use a more-focused approach for synthesizing 

new instances near existing minority class instances. Synthetic 

Minority Oversampling Technique (SMOTE) and Synthetic 

Minority Oversampling Technique-Iterative Partitioning Filter 

(SMOTE-IPF) [23, 15] are popular sophisticated forms of 

resampling techniques that use the k-nearest neighbour algorithm 

to synthesize new instances [23]. These techniques have been 

used in prior literature in improving emotion classification 

problems and lung-cancer detection and have proven to improve 

the accuracy of the classifier [22, 31]. In this study, we 

investigate the performance of machine-learning algorithms with 

and without resampling, where these techniques are applied to a 

real-world landslide prediction dataset. Furthermore, we evaluate 

the optimal value of the k parameter in the k-nearest neighbour 

algorithm for both SMOTE and SMOTE-IPF techniques. 

 

In what follows, we provide a brief overview of the research 

that has been conducted in the past for addressing the class-

imbalance followed by the research involving machine-learning 

for landslide prediction. Next, we discuss the study area and data 

that has been used for this study. Then, we provide a brief 

explanation of each of the resampling techniques that we have 

employed in this study. Finally, we apply machine-learning 

algorithms with and without class imbalance techniques and 

close the paper by highlighting the implications of our results for 

landslide predictions using class-imbalance methods. 

 

II. PREVIOUS WORK 

The problem of learning from imbalanced data sets has been 

intensively researched in recent years, and several methods have 

been proposed to address it [15]. For example, resampling is a 

classifier-independent method that modifies the data distribution 

considering local characteristics of instances to change the 

balance between two or more classes. The most common method 

is random oversampling [24]. Random oversampling works by 

selecting a minority class instance randomly and replicating it till 

the desired balance between classes is reached. In [24], it is 

suggested that random oversampling has been effective across 

125 different synthetic datasets. Beyond random oversampling, 

SMOTE is one of the most well-known classes imbalance 

techniques: it generates new artificial minority class examples by 

interpolating among several existing minority class examples that 

are similar to each other. In [23], it is showed that among the nine 

datasets considered in their study from different domains, 

SMOTE performed better than the random oversampling method 

in six datasets. SMOTE does not blindly generate random 

instances in a dataset, and it uses a more focused resampling 

method that helps it improve overall classification performance. 

While SMOTE outperforms random oversampling, however; 

some researchers have shown that the class-imbalance is not a 

problem itself [15]. The classification performance degradation is 

usually linked to other factors related to data-distributions. 

Among them, the influence of noisy and borderline examples on 

classification performance in an imbalanced dataset has been 

observed [17]. Borderline instances are defined as instances 

located either very close to the decision boundary between the 

minority and majority classes or located in the area surrounding 

class boundaries where classes overlap. The authors refer to 

noisy examples as those from one class located deep inside the 

region of the other class of [17, 19]. The SMOTE-IPF method 

addresses the problem with these borderline and noisy examples 

present in the dataset, which SMOTE ignores [15]. SMOTE-IPF 

is a two-step approach. First, instances are generated using 

SMOTE algorithm. Second, all the noisy and borderline instances 

are cleaned from the dataset by using ensemble-filtering based 

technique called the Iterative Partitioning Filter.    

 

Furthermore, there have been several studies that have used 

the state-of-the-art machine learning technique in the landslide 

domain [9, 13, 14]. In [14] the author uses the logistic regression 

model in their study to predict the slope-failure initiation using 

the antecedent 30-day and 15-day rainfall. This logistic 

regression model is further validated through the Receiver 

Operating Characteristic (ROC) curve analysis using a set of 

samples which had not been used for training the classifier. The 

model showed an accuracy of 95.1%. Furthermore, many prior 

investigations have compared several machine-learning 

classifiers for prediction of landslides [4, 9, 10, 13]. However, 

little research has taken place that investigates how certain class-

imbalance techniques improve predictions in real-world landslide 

datasets. Since landslide occurrence is a rare event, the positive 

(landslide occurred) class has comparatively fewer instances 

compared to negative (landslide did not occur) class. This can be 

a major problem, especially in the landslides prediction domain 

because a classifier can get a very high accuracy simply by 

predicting all samples to belong to the majority class.  

 

The primary objective of this paper is to compare different 

oversampling techniques in their ability to reduce class-

imbalance and ensure the accuracy of landslide predictions. As 

part of our evaluation, we consider three different methods, 

Random Oversampling, SMOTE, and SMOTE-IPF, to reduce the 

class-imbalance problem. We expect that SMOTE-IPF should 

perform better than the other two class-imbalance methods 



because of its filtering of noisy and borderline instances [15]. 

Also, we expect that both SMOTE variants would perform better 

compared to the random oversampling technique as these 

SMOTE variants use a more focused oversampling approach 

compared to the random oversampling method. Finally, we also 

expect that the landslide classification performance would be 

higher in conditions where class-imbalance methods are used 

compared to conditions where these methods are not used. For 

the landslide prediction task, we use some machine-learning 

algorithms that include Logistic Regression [1], Decision Trees 

[16], Support Vector Machines [30], Random Forests [32] and 

Multilayer Perceptron [4]. The choice of these machine-learning 

algorithms is based upon their use for landslide predictions in the 

literature [4, 9, 10, 13]. 

 

In the next section, we explain the study area and the data 

used. In the subsequent sections, we provide details of the 

compilation of the data set followed by a brief overview of 

different class-imbalance techniques and the various machine-

learning algorithms used in this paper. 

 

III. METHODOLOGY 

A. Data Compilation and Preparation 

The dataset used in this paper corresponds to the National 

Highway-21 (NH-21) of India in a stretch extending from Mandi 

to Manali. As part of the dataset, we attempt to predict landslides 

based on the antecedent 30-day rainfall and land susceptibility. 

These attributes were also used by [14]; however, for a different 

region corresponding to the Uttarakhand state in India (along 

with NH 58). The dataset has been built from three distinct 

sources: Himachal Pradesh Public Works Department (HPPWD), 

Indian Meteorological Department (IMD), and Indian Space 

Research Organization (ISRO). 

 

The HPPWD provided the historical landslide occurrence 

data between 2011 and 2015 along NH-21 between Mandi and 

Manali towns. The IMD provided the rainfall information in the 

region of interest in a latitude-longitude format. Finally, for each 

location corresponding to the HPPWD landslide dataset, a 

landslide susceptibility was computed from Very Low to Severe 

using Indian Space Research Organization’ Bhuvan website [3].  

 

Figure 1 shows the frequency of landslide along the NH 21 

highway between Mandi and Manali towns using the HPPWD 

data. The horizontal axis denotes the distance (in km) of the 

landslide occurrence event from Chandigarh, i.e., the origin of 

NH-21. The vertical axis shows the frequency of landslides 

between 2011 and 2015 along NH 21. The 200-km milestone 

refers to the inter-state bus terminal at Mandi, and the 305-km 

milestone corresponds to the inter-state bus terminal at Manali. 

 

We changed this milestone-based dataset into a latitude-

longitude – based dataset since the rainfall and susceptibility data 

were in the latitude-longitude format. A two-step approach was 

followed for achieving this data conversion. First, all the 

milestones along the NH-21 were mapped to their corresponding 

latitude and longitude positions. Second, we found the mid-point 

milestone for all landslides occurring along NH-21. Next, based 

on the mapping in the first step and a landslide’s mid-point 

milestone in the second phase, we interpolated latitude and 

longitude position for the landslide’s mid-point. This technique 

of interpolation has been followed in the literature by IMD [6]. 

 

Next, we used IMD rainfall dataset between 2011 and 2015 

and mapped the precipitation occurring at each landslide’s 

midpoint’s latitude and longitude. In the IMD dataset, the latitude 

and longitude positions vary in increments of 0.25° from 6.5° to 

38.5°and66.5° to 100°, respectively. The last 30-days rainfall at 

the latitude and longitude point that was closest to the landslide’s 

mid-point was tagged to the landslide’s mid-point. 

 

 

Figure 1: Landslides frequency along the National Highway 21 fromHPPWD 

landslide occurrence dataset. 

Finally, susceptibility data was retrieved from ISRO’s 

Bhuvan website [3] for each landslide’s mid-point using the 

zonation map along NH-21. Figure 2 shows the zonation map 

along NH-21 between Mandi and Kullu towns. The color on the 

map indicates the susceptibility of the location to landslides. The 

red, orange and pink colors correspond to severe, very high and 

high landslide susceptibility, respectively; whereas, the yellow, 

green and sky-blue colors correspond to moderate, low, and very 

low landslide susceptible. The navy-blue color in the map 

corresponds to the Beas River flowing along NH-21. 

For machine-learning analyses, we need at least two classes: 

landslide (positive) and no-landslide (negative).In the dataset, on 

a specific day and at certain latitude and longitude point, a 

landslide could occur only once. These landslide occurrences 

were marked as the landslide class. Furthermore, if at a latitude- 
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Figure 2: Zonation map along NH-21 between Mandi andKullu towns (Source: 

ISRO’s Bhuvan website). 

-Longitude point landslide occurred n times (or over n days) in a 

month, and then this implied that no landslide took place on any 

other days in the same month at the same point. So, we generated 

the no-landslide class by considering all days in the month for a 

latitude – longitude point where a landslide did not take place 

(this latitude – longitude point did experience landslides for n 

days in the same month). Our dataset consisted of 381 landslides 

(positive) class instances and 9885 instances corresponded to no-

landslides (negative) class. As the dataset contained only 3.7% 

positive class instances, it is severely imbalanced. In the next 

section, we describe the different class-imbalance techniques that 

help us correct the imbalance in the dataset. 

 

B. Oversampling Techniques 

 

In this paper, we have categorized oversampling techniques 

based on their nature of generating new instances for the 

minority class. The two categories discussed in this study are 

Random Oversampling and Synthesized Oversampling. The 

primary difference between these techniques is how new 

instances are generated in each of this method.  

 

Random Oversampling: In this method, instances of the 

minority class are selected randomly and duplicated [24] The 

generated instances do not contribute any new information in the 

new data set but only increase the magnitude of the number of 

minority class by just replicating the same information. In our 

dataset, we have amplified the positive landslide class instances 

from 381 to 9885 (= to the negative class instances). 

 

Synthesized Oversampling: This technique differs from 

Random Oversampling, as it contributes new information to the 

dataset by generating new examples in the proximity of the 

existing minority class examples. We have discussed two 

algorithms in this paper namely, SMOTE and SMOTE-IPF, 

where the former is a widespread technique for resolving the 

class-imbalance problems; while, the latter is the latest variant of 

the former technique that performs better than other variants 

[15].   

 

1. SMOTE [23]: Synthetic Minority Oversampling 

TEchnique (SMOTE) synthesizes new examples which 

are not a mere duplication of the existing instances, but, 

they are generated near of these current instances. This 

generation is done using the k nearest neighbor 

algorithm. For every example x in minority class, k-

nearest neighbors are found. Among these neighbors, 

one of the instances is randomly chosen, and a new 

instance is created along the line from x to the 

randomly selected neighbor.  The ratio required for 

dividing the two lines is randomly generated. The 

number of samples duplicated for each x is decided 

from an input parameter called amplification. If 

amplification is 100%, one example is created for every 

x. Similarly, the k is also an input parameter which can 

be specified by the user. For our experimental 

framework, we have chosen the amplification as 

2594% such that the preprocessed data set has an equal 

number of positive and negative instances. Apart from 

amplification, we have generated multiple class-

imbalance corrected data sets by varying the k in k-

nearest neighbors; from 1 to sqrt(n), i.e., 101 in steps of 

two. It is important to note that k has been incremented 

by 2 units to avoid the even values of k because even 

values are generally vulnerable to a tie and an 

additional tie-breaker is needed. This range of variation 

of k has been suggested in the literature [28]. 

 

2. SMOTE-IPF [15]: SMOTE – Iterative Partitioning 

Filter (IPF) is an extension to SMOTE, as it not only 

generates new examples; but, it removes noisy 

examples that were created by SMOTE. First, SMOTE 

is used to oversample the minority class instances by 

making synthetic examples. Second, Iterative 

Partitioning Filter [33] cleans the oversampled data set 

by removing the instances which are noisy. The 

algorithm has been explained below: 

I. The processed data set E after applying 

SMOTE has divided into n equal subsets. 

II. At every iteration, a decision tree is trained for 

each subgroup, creating n-decision trees (C4.5 

[8] algorithm (discussed below) in total. 

III. Each decision tree predicts the value of an 

instance, i.e., either as a landslide or no-

landslide. 

IV. An example is labeled noisy using two of the 

voting schemes: majority or consensus. In the 

majority scheme, if more than 50% of the 

classifiers classify an example as no-landslide 

while it was a landslide or vice-versa, then that 

case is considered noisy. For the consensus 

scheme, all classifiers must classify an 



instance as the opposite of what it is. These 

noisy examples are added to data set S. 

V. The iteration stops if for consecutive t 

iterations the number of instances in S is less 

than p%. 

VI. This set S is then removed from the data set E. 

 

For our experimental framework, we have fixed the 

parameters n, t and p as 9, 3 and 1% respectively as suggested 

by [15]. We have varied the k parameter in the k-nearest 

neighbors’ algorithm in a similar way as mentioned for SMOTE 

above. 

 

C.  Analysis Methodology 

 

The most straightforward way to evaluate the performance 

of a classifier is its accuracy or error rate. Accuracy is defined as 

the ratio of instances (both positive and negative) correctly 

classified by the total number of instances present in the dataset. 

However, accuracy can give misleading conclusions for class-

imbalanced data [11]. For example, if a binary classifier is 

trained on a dataset where 99% of instances are of one class, 

then the classifier can simply get 99% accuracy by classifying 

every instance as of that class. Thus, it is important to resort to 

other performance measures that evaluate the classifier’s 

performance class-wise. For our framework, we have chosen 

true-positive rate, false-positive rate,area under the receiver 

operating characteristiccurve (AUC), and sensitivity index (d’) 

as the evaluation metrics for the performance of different 

machine-learning algorithms. True-positive (TP) rate, or 

precision,is the percentage of landslide instances correctly 

classified by the classifier as landslides. False-positive (FP) rate 

is the percentage of no-landslide instances that are classified as 

landslides. In mostcases, there is a trade-off between these two 

rates [11]. The choice of TP rate and FP rate in this study is 

because these measures together provide a complete picture of a 

classifier’s accuracy. Furthermore, the AUC represents the 

performance of an algorithm as a scalar value. The higher the 

AUC, the better the model in prediction. Prior research [15, 23, 

24]has used AUC as the primary evaluation metric for 

performance of an algorithm. In addition to the AUC, we have 

also used the sensitivity index (𝑑’) as an additional performance 

metric in this paper. Sensitivity Index is the separation between 

the means of the correctly classified instances and the 

incorrectly classified instances [25]. It is calculated as per the 

following equation: 

 

𝑑′ = 𝑍(𝑇𝑃 𝑟𝑎𝑡𝑒) − 𝑍(𝐹𝑃 𝑟𝑎𝑡𝑒)         (1) 

 

Where function 𝑍(𝑝), 𝑝 ∈  [0,1], is the inverse of the cumulative 

distribution function of the Gaussian distribution. The higher the 

sensitivity index (or𝑑’) of a classifier, the better the 

classifiercompared to other classifiers.  

 

D. Data Classification 

 

Prior research [13] compared several machine-learning 

algorithms based on prediction performance, interpretability, 

and high-dimensional prediction. Similarly, we have compared 

machine-learning algorithms for prediction of landslides. In this 

paper, we have compared logistic regression [1], decision trees 

[16], random forests [32], support vector machines (SVMs) [30], 

and neural networks (or Multilayer Perceptrons) [4] using a 10-

fold cross-validation procedure [28].  

 

Logistic regression has been particularly used in modeling 

landslides as it provides a probability of landslide occurrence 

against every data point using the logit model [1]. It has been 

widely used in landslide susceptibility mapping [18]. A decision 

tree is a hierarchical model composed of decision rules that 

recursively split independent variables into zones such that each 

time maximum balance in each split is achieved [16]. The 

advantage of decision trees is that they can handle categorical as 

well as numeric variables and can incorporate them without 

strict assumptions on data [7]. In this study, we have used the 

J48 algorithm which is a Java implementation of the C4.5 

algorithm [8]. The C4.5 uses an entropy-based measure as the 

attribute selection criteria on the tree nodes, and it is the same as 

the ID3 algorithm [16]. Given a training dataset T with subsets 

T_i, i = 1,2,...,s, the C4.5 algorithm constructs a decision tree 

using the top-down and recursive-splitting technique starting 

with attributes with the maximum gain [16]. 

 

Random forest (RF) is an ensemble technique that utilizes 

many classification trees (a ‘forest’) to stabilize the model 

predictions [32]. The RF algorithm exploits random binary trees 

which use a subset of the attributes through bootstrapping 

techniques: From the original data set a random selection of the 

attributes is performed and used to build the model, the data not 

included is referred to as “out-of-bag” (OOB) [32]. Each tree is 

developed to minimize classification errors; but, the random 

selection influences the results, making a single-tree 

classification very unstable. For this reason, the RF method 

makes use of an ensemble of trees (the so-called “forest”) 

thereby ensuring model stability [9]. The RF algorithm has been 

used in landslide predictions domain and susceptibility modeling 

by several studies [9, 13, and 20].  

Support vector machine is a supervised learning method 

based on statistical learning theory and the structural risk 

minimization principle [30]. Using the training data, SVM 

implicitly maps the original input space into a high-dimensional 

feature space. Subsequently, in the feature space, the optimal 

hyper plane is determined by maximizing the margins of class 

boundaries. We chose the Polynomial Kernel function in this 

paper since it has outperformed other kernels in prior research 

[7]. 



 

The Multilayer Perceptron (MLP) is an artificial neural 

network that has been employed widely in many fields including 

landslide susceptibility assessment [4]. We chose the back 

propagation algorithm for our framework as it is a popular 

algorithm for training MLPs. 

 

While each of these machine-learning algorithms could be 

used with a variety of settings and procedures for model 

selection, we chose configurations that we have considered 

typical based upon prior applications. All the techniques 

mentioned above were run in the Java-written Weka package 

with default parameter settings [8]. In the next section, the 

classifiers’ accuracy has been discussed. Subsequently, the AUC 

results and sensitivity index for varying k in case of SMOTE 

and SMOTE-IPF have been shown. Finally, the performance of 

both preprocessed and original datasets have been mentioned in 

training with the Random forests classifier. 

IV. RESULTS 

Table 1 shows the performance of the different machine-

learning classifiers on the landslide dataset. As the dataset is 

class-imbalanced, each classifier’s accuracy is very high. Thus, 

we need to investigate each classifier’s performance on other 

performance measures beyond accuracy. Among other 

measures, the TP rate was the highest for Random Forest 

algorithm followed by the C4.5 Decision Tree algorithm. This 

suggests that Random Forest did a good job in predicting the 

landslide instances correctly. In contrast, Logistic Regression 

and MLP had the lowest TP rate of 0.02 and 0.01, respectively, 

indicating that they could predict the landslides class instances 

only 1% of the time. In addition to the TP rate, a low FP rate is 

preferred because the FP rate corresponds to the ratio of 

instances that belong to the no-landslide class; however, these 

instances were incorrectly classified as belonging to the 

landslide class by the algorithm. Both a low value of TP rate and 

FP rate is indicative of the fact that the classifier is biased. For 

example, the FP rate and TP rate in SVM were 0.001 and 0.001 

respectively. This result suggested that all the instances were 

classified as belonging to the majority no-landslide class by the 

SVM.As seen in Table 1, all classifiers showed good results on 

the FP rate. The AUC and Sensitivity Index allowed us to 

observe the combined effect of the TP and FP rates. Based on 

the AUC and sensitivity index, the Support Vector Machine 

(SVM) algorithm performed poorly in predicting the landslide 

class Furthermore, the AUC and sensitivity index was the 

highest in case of the Random Forest algorithm. These results 

suggest that the Random Forest algorithm performed better than 

other classifiers on the landslide dataset. Thus, we took the 

Random Forest classifier as the base classifier for the class-

imbalance techniques. 

 

As mentioned above, the SMOTE and SMOTE-IPF 

techniques used the k-nearest neighbor algorithm to reduce the 

class imbalance. For each k value in SMOTE and SMOTE-IPF, 

 

TABLE I. 
TEN-FOLD CROSS VALIDATION COMPARISONS OF DIFFERENT CLASSIFIERS ON THE 

LANDSLIDE DATASET BEFORE PREPROCESSING 

 
Classifier Accuracy TP rate FP rate AUC Sensitivity 

Index 

Logistic 

Regression 

96.25% 0.02 0.001 0.79 1.67 

C4.5 97.17% 0.44 0.01 0.77 2.18 

Random 

Forests 

97.28% 0.58 0.01 0.90 2.53 

SVM 96.28% 0.001 0.001 0.50 0.00 

MLP 96.85% 0.01 0.01 0.79 1.99 

 

-a new dataset was obtained, and we evaluated the best k value, 

one that would maximize the sensitivity index. For determining 

the sensitivity index, the Random Forest algorithm, the best 

among the different machine-learning algorithms, was applied to 

the resulting SMOTE or SMOTE-IPF processed data sets in 

a10-fold cross-validation for several values of k. As seen in 

Figure 3, for all values of k, the SMOTE-IPF technique 

outperformed the SMOTE technique for the sensitivity index. 

Furthermore, the sensitivity index was maximized for SMOTE-

IPF and SMOTE techniques at k=1. This k-value implied that 

the synthesis being done in SMOTE and SMOTE-IPF performed 

the best when considering only 1-neighbor in the close vicinity 

of existing landslide class points.  

 

Next, we used the random oversampling, SMOTE, and 

SMOTE-IPF techniques with Random Forest algorithm to 

generate 10-fold cross validation predictions on the landslide 

dataset. First, all the three over-sampling methods improved the 

performance of the minority class. Comparing with Random 

Forest algorithm without the use of over-sampling methods, the 

best improvements of TP rate was in both SMOTE and SMOTE-

IPF techniques. Both SMOTE and SMOTE-IPF increased the 

TP rate from 58% to 99% on the same dataset. Random 

oversampling was also comparable to the SMOTE and SMOTE-

IPF results, where the improvement in TP rate was from 58% to 

98%. Secondly, across all class-imbalance techniques, there was 

very little change in the FP rate. This result suggested that none 

of these algorithms deteriorated the FP rate. Also, the AUC 

obtained was 1.0 in case of SMOTE-IPF with Random Forest 

classifier. This result indicated that almost all instances, both 

synthetic and original, had been correctly classified by the 

Random Forest classifier after pre-processing data using 

SMOTE-IPF. 

 

Furthermore, SMOTE and random oversampling techniques 

performed equally well regarding the AUC. Finally, the 

sensitivity index also preferred SMOTE-IPF to other class-



imbalance techniques. We also performed a Wilcoxon signed-

rank test to check if the results obtained in SMOTE-IPF were 

significantly better compared to those obtained in SMOTE.A  

 
Figure 3: Sensitivity Index when k nearest neighbors are varied in SMOTE and 

SMOTE-IPF 
 

Wilcoxonsigned-rank test indicated thatthe sensitivity index(d’) 

of SMOTE-IPF was significantly higher than that of SMOTE (Z 

= -6.22, p< .001). Furthermore, a Wilcoxon signed-rank test 

indicated that the AUC of SMOTE-IPF was significantly higher 

than that of SMOTE (Z = -6.81, p< .001). 

 

TABLE II. 
TEN-FOLD CROSS VALIDATION COMPARISONS OF DIFFERENT CLASS-IMBALANCE 

TECHNIQUES WITH RANDOM FORESTS AS THE BASELINE CLASSIFIER 

 
Resampling 

Technique 

Accuracy TP 

rate 

FP rate AUC d’ 

Without 

Resampling 

97.28% 0.58 0.01 0.90 2.53 

Random 

Oversampling 

99.11% 0.98 0.001 0.99 7.30 

SMOTE 98.2% 0.99 0.02 0.99 4.38 

SMOTE-IPF 99.99% 0.99 0.001 1.00 8.72 

V. DISCUSSION AND CONCLUSIONS 

The basic aim of this research has been to improve the 

prediction power of different machine-learning algorithms by 

removing class-imbalance in a real-world dataset concerning the 

landslide problem. We tried different class-imbalance 

techniques consisting of random oversampling, SMOTE, and 

SMOTE-IPF. All three class-imbalance techniques improved the 

classification results, which is consistent with previous findings 

in the literature [15, 23, 24].However, the most recent class-

imbalance technique, SMOTE-IPF [15], outperformed other 

techniques including its predecessor, the original SMOTE [23]. 

Thus, our expectation that using SMOTE-IPF helps to correct 

the class-imbalance problem was met, and the accuracy was 

further improved. In contrast, SMOTE does not perform better 

than random oversampling. That is because the newly 

synthesized instances by SMOTE likely add more noisy and 

borderline instances, deteriorating the FP rate. However, random 

oversampling simply duplicated the existing instances, 

preserving the FP rate. Additionally, it is important to note that 

class-imbalance techniques, which use k-nearest neighbors like 

SMOTE and SMOTE-IPF, could generate very good prediction 

results even for small values of k. The smaller k value ensured 

that it was less likely that the instances belonging to the no-

landslide (negative) class don’t contribute to the instance 

generation process.  

 

Furthermore, the Random Forest algorithm performed better 

than others. This performance of Random forests algorithm 

could be attributed to its ensemble approach. Ensemble models 

create multiple classifiers on different subsets of the original 

dataset. The aggregate opinion of multiple classifiers is likely to 

be less noisy than one single classifier leading to better and 

more stable predictions. This result also suggests that ensemble 

techniques could be suitable for classifying phenomena like 

landslides, where non-ensemble approaches do not do so well. 

However, other machine-learning techniques may perform 

differently on newer datasets. This study was meant to serve as a 

preliminary study for applying class-imbalance techniques to 

real-world landslide datasets. As part of future research, we plan 

to perform an exhaustive study by training other machine-

learning classifiers like MLP, SVM, Logistic Regression, and 

C4.5 on the generated dataset by SMOTE-IPF and other 

techniques.  

While this paper introduced the class-imbalance problem in 

a landslides prediction task and tried to correct the problem 

using oversampling techniques, one could also try other 

techniques as proposed in the literature. One of these techniques 

is called cost-sensitive learning [34], where a non-zero cost is 

associated with false positives and false negatives to reduce the 

number of misclassified instances [31]. Furthermore, newer 

techniques like SPIDER [17] have been proposed in the 

literature for mitigating the class-imbalance problem which not 

only amplifies the minority class instances; but, relabels the 

existing noisy majority class instances to the minority class. In 

future, we plan to incorporate some of these techniques with the 

techniques discussed in this paper and analyze their performance 

for predicting landslides. 
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